Page last updated: 2024-12-09

1-[2-[(2-methylphenyl)methylthio]ethyl]-3-phenylthiourea

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

You're asking about a compound with a rather complex chemical name: **1-[2-[(2-methylphenyl)methylthio]ethyl]-3-phenylthiourea**. Let's break it down:

**1. What is it?**

* This compound is a **thiourea derivative**. Thioureas are organic compounds containing the functional group `-NH-C(=S)-NH-`.
* It has a **complex structure** with various functional groups:
* **Aromatic rings:** Two phenyl rings (C6H5) and one 2-methylphenyl ring (C6H4CH3).
* **Sulfur containing groups:** A thioether (S-CH2) and a thiourea functional group.
* **Alkyl chains:** An ethyl group (CH2CH3).

**2. Why is it important for research?**

You're right to ask! This compound is not commonly known for its importance in research. There is limited information available about its specific properties and applications. Here are some possible reasons why it might be relevant:

* **Potential biological activity:** Thioureas are known for their diverse biological activities, often exhibiting anti-cancer, anti-inflammatory, and anti-microbial properties. This compound's structure, with its aromatic rings and sulfur containing groups, suggests it might possess some biological activity, making it a target for further investigation.
* **Synthetic building block:** The compound could be a useful intermediate in the synthesis of other, more complex molecules with potential biological applications.
* **Exploration of structure-activity relationships:** By studying the effects of this compound and its modifications on biological systems, researchers could gain insights into the relationship between molecular structure and biological activity.

**To get a better understanding of this compound's importance, you would need to:**

* **Identify specific research papers or patents** that mention it.
* **Consult with chemists or researchers** specializing in the synthesis and study of thiourea derivatives.

**In summary:** 1-[2-[(2-methylphenyl)methylthio]ethyl]-3-phenylthiourea is a complex organic compound with potential biological interest. However, its specific applications and importance for research require further investigation.

Cross-References

ID SourceID
PubMed CID2174625
CHEMBL ID1400829
CHEBI ID111452

Synonyms (16)

Synonym
HMS2624O17
smr000271679
MLS000677506 ,
n-{2-[(2-methylbenzyl)thio]ethyl}-n'-phenylthiourea
CHEBI:111452
AKOS000388710
1-[2-[(2-methylphenyl)methylsulfanyl]ethyl]-3-phenylthiourea
STL253745
1-{2-[(2-methylbenzyl)sulfanyl]ethyl}-3-phenylthiourea
1-[2-[(2-methylbenzyl)thio]ethyl]-3-phenyl-thiourea
1-[2-[(2-methylphenyl)methylsulfanyl]ethyl]-3-phenyl-thiourea
cid_2174625
bdbm52586
1-[2-[(2-methylphenyl)methylthio]ethyl]-3-phenylthiourea
CHEMBL1400829
Q27191168
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (1)

ClassDescription
thioureasCompounds of general formula RR'NC(=S)NR''R'''.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (13)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
glp-1 receptor, partialHomo sapiens (human)Potency11.22020.01846.806014.1254AID624417
TDP1 proteinHomo sapiens (human)Potency23.72460.000811.382244.6684AID686978; AID686979
nonstructural protein 1Influenza A virus (A/WSN/1933(H1N1))Potency19.95260.28189.721235.4813AID2326
IDH1Homo sapiens (human)Potency20.59620.005210.865235.4813AID686970
importin subunit beta-1 isoform 1Homo sapiens (human)Potency16.36015.804836.130665.1308AID540253
snurportin-1Homo sapiens (human)Potency16.36015.804836.130665.1308AID540253
GTP-binding nuclear protein Ran isoform 1Homo sapiens (human)Potency16.36015.804816.996225.9290AID540253
nuclear receptor ROR-gamma isoform 1Mus musculus (house mouse)Potency4.65910.00798.23321,122.0200AID2546; AID2551
survival motor neuron protein isoform dHomo sapiens (human)Potency1.12200.125912.234435.4813AID1458
DNA dC->dU-editing enzyme APOBEC-3F isoform aHomo sapiens (human)Potency35.48130.025911.239831.6228AID602313
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Activation Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
POsterior SegregationCaenorhabditis elegansEC50 (µMol)300.00002.201047.1808186.6810AID1964
Sodium-dependent noradrenaline transporter Homo sapiens (human)EC50 (µMol)300.00000.082031.0243168.9080AID1960
Zinc finger protein mex-5Caenorhabditis elegansEC50 (µMol)300.00000.082033.5679168.9080AID1960
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (11)

Processvia Protein(s)Taxonomy
monoamine transportSodium-dependent noradrenaline transporter Homo sapiens (human)
neurotransmitter transportSodium-dependent noradrenaline transporter Homo sapiens (human)
chemical synaptic transmissionSodium-dependent noradrenaline transporter Homo sapiens (human)
response to xenobiotic stimulusSodium-dependent noradrenaline transporter Homo sapiens (human)
response to painSodium-dependent noradrenaline transporter Homo sapiens (human)
norepinephrine uptakeSodium-dependent noradrenaline transporter Homo sapiens (human)
neuron cellular homeostasisSodium-dependent noradrenaline transporter Homo sapiens (human)
amino acid transportSodium-dependent noradrenaline transporter Homo sapiens (human)
norepinephrine transportSodium-dependent noradrenaline transporter Homo sapiens (human)
dopamine uptake involved in synaptic transmissionSodium-dependent noradrenaline transporter Homo sapiens (human)
sodium ion transmembrane transportSodium-dependent noradrenaline transporter Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (10)

Processvia Protein(s)Taxonomy
actin bindingSodium-dependent noradrenaline transporter Homo sapiens (human)
neurotransmitter transmembrane transporter activitySodium-dependent noradrenaline transporter Homo sapiens (human)
neurotransmitter:sodium symporter activitySodium-dependent noradrenaline transporter Homo sapiens (human)
dopamine:sodium symporter activitySodium-dependent noradrenaline transporter Homo sapiens (human)
norepinephrine:sodium symporter activitySodium-dependent noradrenaline transporter Homo sapiens (human)
protein bindingSodium-dependent noradrenaline transporter Homo sapiens (human)
monoamine transmembrane transporter activitySodium-dependent noradrenaline transporter Homo sapiens (human)
alpha-tubulin bindingSodium-dependent noradrenaline transporter Homo sapiens (human)
metal ion bindingSodium-dependent noradrenaline transporter Homo sapiens (human)
beta-tubulin bindingSodium-dependent noradrenaline transporter Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (6)

Processvia Protein(s)Taxonomy
plasma membraneSodium-dependent noradrenaline transporter Homo sapiens (human)
cell surfaceSodium-dependent noradrenaline transporter Homo sapiens (human)
membraneSodium-dependent noradrenaline transporter Homo sapiens (human)
neuronal cell body membraneSodium-dependent noradrenaline transporter Homo sapiens (human)
presynaptic membraneSodium-dependent noradrenaline transporter Homo sapiens (human)
plasma membraneSodium-dependent noradrenaline transporter Homo sapiens (human)
axonSodium-dependent noradrenaline transporter Homo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (13)

Assay IDTitleYearJournalArticle
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (5)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (20.00)29.6817
2010's3 (60.00)24.3611
2020's1 (20.00)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 12.56

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index12.56 (24.57)
Research Supply Index1.79 (2.92)
Research Growth Index4.36 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (12.56)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other5 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]